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ON THE LINEAR PROBLEM OF A SUPERSONIC FLOW 
OF A VISCOUS GAS PAST A VIBRATOR* 

E.V. BOGDANOVA 

Authors of /1,2/ use the framework of the linear theory to investigatedsupersonic 
boundary layer with selfinduced pressure near a triangular wall oscillating harm- 

onically with a small amplitude. Solution of the equations for the inner sublayer 
gave rise to a dispersion relation the roots of which determined the perturbations 

travelling up and down the stream. 

The present paper deals with the problem of supersonic gas flow past a vibrator theoscll- 

lation amplitude of which increases with time, in the linear approximation. A dispersion 
relation arising in this case is studied. It is shown that the number of eigen solutions of 
the problem depends essentially on the character of the vibrator oscillations. 

1. Formulation of the problem. Let us consider a flow past a flat, thermally In- 
sulated plate of length L, transforming into a triangular oscillating projection, i.e. a 
vibrator, and ending with a flat plate of length o(L). Let t be time, I and Y the Cartesian 

coordinates, a and v the velocity vector components, p density, p the pressure and 1, the 
first viscosity coefficient. Assuming the velocity of the impinging stream p be equal tc 

I/, (M,> I), we introduce the small parameter E = Re,-"~(Re,=o,U,L/h,). We shall assume that 
the Prandtl number is unity and Ir,/)r-~, = CT/T,. 

Let us select a longitudinal dimension of the oscillating segment O(e'L), theoscillation 

frequency o(E-'u,lL) and the amplitude O(EbL). We describe the flow using the boundary layer 

equations with selfinduced pressure /l-3/. The oscillating part of the wall is described, 

in terms of dimensionless coordinates of the inner sublayer, by the equation 

y, = cf (2) exp (0,f)cos (+I) (1.1) 

Here the parameter a< l,o, > 0 and ua> U are the dimensionless frequencies and the motion 

is studied over the interval contained between some infinitely distant instant Of time and 

l= 0. The function f(r) defines the triangular form with parameters a, b and h 

! 

0, z . . u 

‘(‘)= 

hx/b, 0 G.; z <‘: b 

h(a-x)/(a-b), b&;r<u 
(1.2) 

O,t>a 

The problem is linearized with respect to the Blasius equation by substituting into the start- 

ing equations for the boundary layer with selfinduced pressure, the expansions of the unknown 

functions into series in terms of the small parameter 0 

u=y +ou,+..., ,‘ ..- o,:, .;_ . . . . p-up, f... 

The following problem arises here for the first approximation functions: 

du, t_y++",=-+- 
&I, au, ;.- .z du, 0 

df rrlyzp al a!l 

2$=0; pzi: u,-->o, p,->o (2'---) 

(1.3) 

-cs 
y,, =f(1)exp(w,t)cos((1121) 
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We note that to obtain the conditions of adhesion given above, we must consider an auxilliary 

subregion near the wall the characteristic dimension of which is !/I =Y/O, since the condition 
of linearization nI = 0 (1) is violated as y-+0. 

To simplify the arguments, we introduce the complex frequency W = o, 3_ iw, and consider 
the functions of velocity and pressure as complex functionsofthe real variable, remembering 
that only their real parts have any physical meaning. Let u1 = U (.r, y) exp (Wf), Pl = P (z) 
exp(Wt). Eliminating the function VI from (1.3), we obtain 

LW bU -- 
ay3 Yazay- W -+; u-+0, P-+0 (x+-00) 

u-h- s P(Xl)& (y-c-1; u=--f(x) (y=O) 
--m 

(1.4) 

We construct the solution of (1.4) in the usual manner , using the Fourier transformation 

u&y)= 5 e-‘W (2, yf ctx 
-ca 

The transformed equation (1.4) represents the well known Airy equation the solution of which, 
expressed in terms of the Airy function Ai and satisfying all boundary and limiting conditions 
of (l-4), has the form 

(1.5) 

To separate the single-valued branch of the function P(k), we make a cut in the complexplane 
k = k, + ik, along the posLtive imaginary semiaxis /2-S/. If - 3d2 < argk< n/2 , then the 
integral in (1.5) can be written in the form 

(ik)‘fQv 

j Ai(z)de=jAi(r)dr-SYAi~~)~~=I,--I,(R) 
0 c 

The poles of the analytic function P(k) are determined by the following dispersion equation: 

(1.6) 

argW--- lsx<argB<argWf2/,R(O~argW.~x/2) 

2. Zeros of the dispersion equation. Consider the asymptotic behavioroftheroots 
of the equation (1.6) as IQ I+ a~ (the value of/W/is finite). From (1.6) it follows that 
the negative real semiaxis (arg Q =n) appears within the domain of admissible values of 52, if 
1~13 <arg W,< 52% and emerges outside its boundaries when 0 < arg W( n/3. Let IQ />1,n~3 < 
arg W,< ~12. We shall use the known expressions for the derivative and integral of the Airy 

function in the region containing the semiaxis arg Q = n. 
(1.6), we obtain in the first approximation 

Substituting these expressions into 

Ai(.r)dx=O (2.1) 

-m 

Equations (1.6) were solved on a digital computer for the range of values 
panding the derivative and integral of the Airy function into series. 

191=0(1), by ex- 
The contour lines 

Re(@(w,La))=O and ImIQ,(W,Q)l= 0 were constructed in the complex plane for fixed values of W 
and the points of intersection of these contours gave the required solutions /2/. 
and 2 depict the patterns obtained for 

Figures 1 
IWl=31 for arg W = n/2 and 8% W = n/6, respectively. 

The solid and dashed lines depict R~[~(w,Q)]=o and ImId, (w,O)]= 0, and the shading in- 
dicates the part of the plane for which the relation (1.6) does not hold. 
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Fig.3 

We have found that, irrespective of the value of arg W’, we can always find a unique root 
Q** of the dispersion equation in the first quadrant of the plane Q. The pattern of distri- 
bution of the zeros Q,*(n= 1,2...) in the region Be(Q)<0 depends on the value of arg W. If 
n/B<arg W<n/2, then the distribution tends, with increasing distance from the coordinates 
origin, to the asymptotic distribution described above. The solutions have the corresponding 
roots k*'(Imk** <O) and k,*(Im k,‘> 0) in the plane k under consideration. In the case when 
n/3< arg W < n/2k,* , they represent an infinite sequence with the condensation point at the 

zero, the sequence defined for nst by the relations (2.2). If O<rrg W <n/3, then the number 
of solutions k,,* is finite although it may change depending on the value of I WI. 

Figure 3 illustrates the displacement of the roots in the Q plane relative to values of 
1 W( when arg W= x/2. The arrows indicate the direction of increasing) WJfrom its zero value. 
We see that for small values of Iwltwo roots, Q,* and Q,* lie on the negative real semiaxis. 
On increasing the modulus of the external perturbation frequency, the roots move towards each 
other. When 1 WI> \Wj, where 1 WI, denotes some critical value, the roots move away from the 
real axis and are distributed symmetrically about it on both sides. This is caused by the 
oscillatory character of the function Ai' at Q =IQlc'". Denoting by ai* the values of Q 
at which Ai' (Q) reaches its consecutive maxima (Q is real and Varies from zero to -0000)~ then 

the consecutive critical values I W/I can be found from the formula 
'I2 

I ” Ij .-' aj* 

[ 

Ai'(oj*) 
,,(r, 

1 

l ) _ lo 

I 

From (2.1) we find thatwhen)511~>,n/3<argW,<n/2 , then the dispersion equation has the 
following sequence of zeros: 

Fig.4 

(2.2) 

distributed either along the negative real semiaxis (if a@ W>s/2 /4,5/), 
or alternately on each side of it. Moreover, the further the root from 
the coordinatesorigin, the nearer it approaches to the semiaxis arpa = n. 
When arg W = n/3, the domain of admissible values of a contains only those 
terms of the sequence n, * which satisfy the condition InI a > 0. In the 

plane k = k, $- ik, the roots have the corresponding sequence k,,+ distribut- 
ed in the secorid quarter, and such that 

Ik,'j=O($), bfbfargk,,*=-22n++arg W 

(n/3 < arg W < rri2) 

(2.3) 

In the region R not containing the negative real semiaxis the function P(k) 
can be written, for 1 R 191, as follows: 

If 0 ,< arg W< n/3, then the expression (2.4) holds over the whole domain of admissible values 
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of Q {IQ t > $1. 
&&. n& ] w 1s i. In this case the dispersion equation has two SOllltiOnS in the region 

1 arg8 1 <n which appear, in the plane &, in the upper and lower half-plane respectively 

3. Structure of the solution of the problem in the physical plane. TIW un- 
known function of pressure can be obtained in the physical plane using the formula 

P ft, 2) = Re fP {zf exp (wt)t (3.11 

where P{az) is given by (1.51. Knowing the form of the function f(k}, we use the JordanLemma, 
the theorem of residues and the properties of the dispersion relation to obtain 

I 
- B (W, k**) exp (ik**x), x < 0 

‘fx)= ZB(ET;',k**)exp(ik,*s)- I-j-I+, s>O 
n 

(3.2) 

whsre I, and I_ are integrals along the right and left edge of the cut respectively. If, in 
the case of harmonic oscillations of the vibrator (arg W= 3/Z) an infinite train of pressure 
perturbations always propagates downstxeam, then in the case of the oscillations with increas- 
ing amplitudes, and for the specified ratio of the frequencies, namely for o&B, < u's, the 
number of waves moving downstream becomes finite. 

Figure 4, curves 1 and 2, depict the form of the function p(O,x} for f W [=f,srg WC 
xf&arg W= ~16, respectively (b= f,a-_2,la--_2). Reduction in the value of arg W is aecompan- 
ied by a slight 
5-+$-m, ThiS 

/2/. 

The author 
tion results. 

increase in the amplitude of the function P Ix), and its more rapid decay as 
agrees well with the asymptotic estimate obtained using the method given in 

P (2) = 0 (.r-' exp I--%*3+* [ W r’d= cm fY, ara W)l) , (I-+f=J) 

thanks 0.S. Ryzhov and E.D. Terent'ev fox aSSeSSing the formulation and solu- 
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